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Relaxation dynamics of embedded metal nanoparticles after ultrafast laser pulse excitation is driven by
thermal phenomena of different origins, the accurate description of which is crucial for interpreting experi-
mental results: hot electron-gas generation, electron-phonon coupling, heat transfer to the particle environment,
and heat propagation in the latter. Regarding this last mechanism, it is well known that heat transport in
nanoscale structures and/or at ultrashort timescales may deviate from the predictions of the Fourier law. In
these cases heat transport may rather be described by the Boltzmann transport equation. We present a numeri-
cal model allowing to determine the electron and lattice temperature dynamics in a spherical gold nanoparticle
core under subpicosecond pulsed excitation as well as that in the surrounding shell dielectric medium. For this,
we have used the electron-phonon coupling equation in the particle with a source term linked with the laser
pulse absorption and the ballistic-diffusive equations for heat conduction in the host medium. Either thermal-
izing or adiabatic boundary conditions have been considered at the shell external surface. Our results show that
the heat transfer rate from the particle to the matrix can be significantly smaller than the prediction of Fourier’s
law. Consequently, the particle-temperature rise is larger and its cooling dynamics might be slower than that
obtained by using Fourier’s law. This difference is attributed to the nonlocal and nonequilibrium heat conduc-
tions in the vicinity of the core nanoparticle. These results are expected to be of great importance for analyzing
pump-probe experiments performed on single nanoparticles or nanocomposite media.
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I. INTRODUCTION

Noble metal nanoparticles are especially interesting be-
cause of their linear and nonlinear optical properties linked
with the surface-plasmon resonance.1–3 Thanks to these prop-
erties, numerous applications are being developed based on
metal nanoparticles such as photonic devices, molecular
sensing, biological cell imaging, or photothermal therapy.4–6

These specific properties are driven by the coupling between
light, electrons, and phonons within particles as well as by
energy exchanges between particles and their environment,
the study of which has motivated numerous fundamental in-
vestigations for about two decades. The optical properties of
nanocomposite materials consisting of noble-metal nanopar-
ticles embedded in a dielectric matrix can be modified by
thermal phenomena of different natures—such as electron-
electron and electron-phonon interactions, heat transfer to
the surrounding medium, and heat exchange between neigh-
boring nanoparticles—when exposed to laser light.7–14 The
optimal experimental tool for studying these mechanisms is
certainly pump-probe time-resolved spectroscopy using ul-
trashort laser pulses.13 In such experiments a strong laser
pulse induces a series of coupled optical and thermal phe-
nomena, leading to the transient modification of the material
optical response. The latter mainly depends on the energy
distribution of the conduction-electron gas, the dynamics be-
havior of which is particularly sensitive to energy exchange
between the particle and its environment as well as the en-
ergy transport in the latter. In this case, Fourier’s law is no

longer suited to describe heat propagation as the spatial and
time scales under consideration are smaller than the heat-
carrier mean free path and lifetime, respectively.1–19

Beyond the interest raised by metal nanoparticle optical
properties themselves, it is noteworthy that inclusion of such
particles in a transparent host has been proposed as a model
method to study the impact of the presence of defects in
transparent media on their damage threshold when using
high-intensity pulsed-laser radiation.20,21 The analysis of the
energy exchanges in such systems then also takes on particu-
lar importance for technological purposes.

The two-temperature model was previously applied for
bulk metal, thin films, and metal nanoparticles11,14 to model
the electron relaxation dynamics related to the observed op-
tical response. This model only consists in describing the
electron-lattice coupling in the metallic nanoparticle, the heat
transferred to the matrix being neglected. In a previous
work,7 we have presented an improvement of this approach
to determine the temperature dynamics in nanocomposite
materials under pulsed laser �three-temperature model�. In
this model, the electron excitation by the light pulse, the
usual electron-phonon coupling in metal particles, the
particle-matrix thermal transfer at the interface, and the heat
diffusion predicted by Fourier’s law in the matrix were con-
sidered together. However, as emphasized above, in the gen-
eral case the heat transfer cannot be correctly described by
the Fourier approach when the medium characteristic spatial
scale �and/or the characteristic time of the heat variation�
becomes as small as the heat-carrier mean free path �and/or
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the heat-carrier lifetime�. In these cases, the heat transfer in
the medium might rather be described by the Boltzmann
transport equation �BTE�.15 Chen17,18 proposed the use of an
alternative equation named the ballistic-diffusive equation
�BDE�, which is based on the BTE within the relaxation-time
approximation and appears more simple to solve. In this ap-
proach the heat flux intensity and the internal energy at any
point of the matrix are split into two components correspond-
ing to ballistic carriers originating from the boundaries and
to scattered carriers, respectively.16–19

In this paper we apply our previous three-temperature
model to a gold spherical nanoparticle core surrounded by an
alumina shell by using the BDE rather than the Fourier law
to describe the particle-matrix energy exchange and heat
transport in the matrix. The dynamics of both metal electron
and lattice temperatures, as well as the internal energy at
each point of the host medium, will be determined. Note that,
due to the ambiguity inherent to the definition of a tempera-
ture at a spatial scale lower than the heat-carrier mean free
path and at a timescale far from the steady state, the electron
and lattice temperatures have to be considered only as a mea-
sure of the local and instantaneous internal energies. Both
thermalizing �imposed temperature at the shell outer surface�
and adiabatic �isolated core-shell� boundary conditions will
be examined. The influence of the nanometric scale on the
heat transport mechanisms will be highlighted by comparing,
for different shell thicknesses, the results with those obtained
with the classical Fourier law.

II. MODEL

Let us first point out that the continuum approximation
will be used in our approach as it has been widely done for
studying nonequilibrium heat conduction at the nanoscale by
solving the BTE in different configurations.15–17,22 Indeed,
the characteristic sizes, which will be involved in the follow-
ing, are sufficiently large as compared to the interatomic dis-
tances so as to allow one to neglect the discrete nature of
both the metal nanoparticle and its surrounding medium, to
treat energy exchanges by statistical methods, and to use
continuous variables to describe the relevant properties. If
that was not the case, one would rather employ, for instance,
a molecular-dynamics approach. We consider a core-shell
nanoparticle consisting of a metal nanosphere with radius Rp
surrounded by a dielectric shell with internal and external
radiuses Rp and Rex, respectively �Fig. 1�. The shell thickness
is then ds=Rex−Rp. Such core-shell nanoparticles have al-
ready been synthesized23 and investigated for their linear and
nonlinear optical properties.24,25 The case of an isolated
nanoparticle embedded in a host medium, or that of a diluted
nanocomposite material, corresponds to the infinite shell
thickness limit and can also be accounted for by the present
model. As we already described in Ref. 7, a light pulse is
partly absorbed by the conduction-electron gas of the metal
particle. The room-temperature Fermi-Dirac electron energy
distribution is then changed into a low-density nonthermal-
ized highly energetic electron population. The electron-
electron collisions within the electron gas then lead to the
formation of a hot Fermi-Dirac distribution.11,12 This internal

thermalization occurs on a subpicosecond time scale depend-
ing on the particle size as well as on the energy amount
absorbed. Note that we have recently developed a theoretical
method to account for this nonthermal regime, which could
be integrated into the present model. However, for the sake
of simplification, we will disregard this refinement here by
considering an instantaneous internal energy redistribution
within the electron gas. An electron temperature, Te, can then
be defined at every time t. The electron energy is then trans-
ferred to the particle lattice via electron-phonon coupling and
is then released into the dielectric shell. We shall consider the
same assumptions as in Ref. 7. The evolution of the electron
temperature is then driven by the following equation:

Ce
�Te

�t
= − G�Te − Tl� + Pvol�t� , �1�

where Ce=�eTe is the electron heat capacity, �e is a constant,
G is the electron-phonon coupling constant, Pvol�t� denotes
the instantaneous power absorbed per metal volume unit, and
Tl is the lattice temperature. The temporal evolution of Tl is
controlled, on one hand, by the energy received from the
electron gas via electron-phonon coupling and, on the other
hand, by the heat transferred to the shell medium at the in-
terface. We therefore write

VpCl
�Tl

�t
= VpG�Te − Tl� − H�t� , �2�

where Cl is the heat capacity of the lattice, Vp is the volume
of the particle, and H�t� is the instantaneous heat power
transferred to the dielectric shell from the particle. H�t� may
be written as a function of the heat flux density, q�r , t�, in-
tegrated over the particle surface, Sp,

H�t� = �
Sp

q�r,t� · nds , �3�

where n is the outward unit vector normal to the particle
surface. In the aim to determine q�r , t�, we have applied the
ballistic-diffusive approximation18 that will be explained in
Sec. II A.
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FIG. 1. Schematic of a metal particle, with radius Rp, sur-
rounded by a dielectric shell with external radius Rex. r is the dis-
tance of a point M in the shell from the particle center. r� and r�
represent the distances between M and a surface element of the
particle �S�� and of the shell external surface �S��, respectively. �p

and �ex are the polar angles of these two surface elements relative to
�MO�.
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A. Ballistic-diffusive equations

The essence of the ballistic-diffusive approximation
stands on the splitting of the carrier heat distribution function
f�t ,r ,�� at any point r of the matrix and in a given direction
� into two components. One is due to the carriers emitted
directly from the boundaries, without any scattering, and rep-
resents the ballistic component. The other is related to the
carriers which arrive after scattering �or emission after ab-
sorption� from other points of the medium. Their behavior
may be described by a diffusive process. This approach is
based on the BTE under the relaxation-time approximation15

and can be expressed by the phonon intensity at point r and
direction �, defined as

I��t,r,�� = �v���f�t,r,������/4� , �4�

where v is the phonon group velocity, � is the phonon cir-
cular frequency, and ���� is the phonon density of states per
unit volume. The instantaneous heat flux at each point,
q�r , t�, may be obtained by the integration of I��t ,r ,�� over
all phonon frequencies and all directions �solid angle�. The
ballistic flux component can then be written as

qb�r,t� = �
0

� �� Ib��t,r,��� d	�d� , �5�

where Ib��t ,r ,�� is the ballistic intensity at r in direction �
due to the boundary intensity Iw� �w stands for “wall”� at r
−r��,

Ib��t,r,�� = Iw��t −
r�

�v�
,r − r��,��exp�− r�/
�� . �6�

r� is the distance between the boundary point corresponding
to the direction � and r �see Fig. 1� and t−r� / �v� represents
the time retardation related to the finite speed of phonons.
The equation governing the internal ballistic energy compo-
nent, ub, may be given by

�ub

�t
+ � · qb = − ub/� , �7�

where � is an average of the phonon relaxation time in the
matrix.

The diffusive part is an approximation modeling the heat
carriers that undergo many collisions before reaching the
volume element. It may be described by the following equa-
tion:

�
�qm

�t
+ qm = −

�d

Cd
� um, �8�

where qm and um represent the diffusive components of heat
flux and internal energy, respectively, �d is the heat conduc-
tivity of the medium, and Cd denotes its heat capacity. At
last, the energy conservation relation imposes

�u

�t
+ � · q = 0. �9�

u=ub+um and q=qb+qm are the total internal energy and
heat flux, respectively. The following hyperbolic equation for
um is finally reached:

�
�2um

�t2 +
�um

�t
= � · � �d

Cd
� um� − � · qb. �10�

The boundary conditions ensure that heat carriers origi-
nating from the boundaries have ballistic components only.
This leads to the boundary condition for the diffusive
component18

�
�um

�t
+ um =

2
d

3
� um · n , �11�

where n is the inward unit vector perpendicular to the bound-
ary and 
d= �v�� is the mean free path of heat carriers in the
dielectric. 
d may be given by 	3Dd� with Dd being the heat
diffusivity of the dielectric medium.

B. Application to a core-shell nanoparticle

1. Governing equations

We consider the shell initially at ambient temperature T0.
At time t=0, the inner-shell surface, i.e., at r=Rp, emits
phonons at core lattice temperature Tl�t�. Since such a core-
shell nanoparticle presents a spherical symmetry, the heat
flux as well as the local internal energy �or local temperature�
only depend on the radial distance, and the heat flux is a
radial vector. Applying Eqs. �5� and �6�, the ballistic compo-
nent of the heat flux qb�t ,r� at a given point M of the matrix
�Fig. 1� with a position vector r at time t is provided by

qb�t,r� =
Cd�v�

2
�

1�r�

1

�Tl�t − r�/�v��exp�− r�/
d�pdp

+ q0b�r� . �12�

r� is the distance between a point S� of the particle surface
and M, p=cos��p�, where �p is the polar angle of S� relative
to �MO� �Fig. 1�, and �Tl�t�=Tl�t�−T0 is the lattice tempera-
ture rise. q0b�r� is a time-independent term, which is given
by

q0b�r� =
Cd�v�T0

2 ��
1�r�

1

exp�− r�/
d�pdp

+ �
2�r�

1

exp�− r�/
d�exdex� , �13�

where r� is the distance of a point S� of the external bound-
ary surface and ex=cos��ex� with �ex being the polar angle
defined from �MO� as illustrated in Fig. 1. The integrations
in the two last equations cover all the points of the boundary
surfaces �particle and shell external surfaces� which can be
viewed from M, defining angles 1 and 2.

Following the same procedure, the instantaneous ballistic
component of internal energy at point r may be given as

ub�t,r� =
Cd�v�

2
�

1�r�

1

�Tl�t − r�/�v��exp�− r�/
d�dp + u0b�r� ,

�14�

with

NON-FOURIER HEAT TRANSPORT IN METAL-… PHYSICAL REVIEW B 78, 125408 �2008�

125408-3



u0b�r� =
Cd�v�T0

2 ��
1�r�

1

exp�− r�/
d�dp

+ �
2�r�

1

exp�− r�/
d�dex� . �15�

Finally Eq. �8� can be rewritten as

�
�qm

�t
+ qm = −

�d

Cd

�um

�r
. �16�

2. Initial conditions

As the system is initially at ambient temperature T0, the
initial conditions for the shell medium are

t = 0: T�r,0� = T0, 
 �T�r,t�
�t



t=0

= 0, �17�

or in terms of internal energy,

t = 0: u�r,0� = um�r,0� + ub�r,0� = CdT0, 
 �u�r,t�
�t



t=0

= 0.

�18�

3. Boundary conditions

Applying Eq. �11�, the boundary-condition equation for
the diffusive component at the core-particle surface may be
given by

r = Rp: �
�um

�t
+ um =

2
d

3

�um

�r
. �19�

We have considered two kinds of boundary conditions at the
outer-shell surface �r=Rex�. The first one corresponds to a
condition of full thermalization. In this case the temperature
at the surface is imposed as the ambient temperature. Using
Eq. �11�, one can obtain the equation for the diffusive com-
ponent at this surface,

r = Rex: �
�um

�t
+ um = −

2
d

3

�um

�r
. �20�

The second boundary condition considered here is adiabatic.
In this case, the total heat flux vanishes at the surface. We
have then

qm�r = Rex,t� = − qb�r = Rex,t� . �21�

In order to determine the electron and lattice temperatures
of the particle, as well as the heat flux and local temperature
in the shell, Eqs. �1�, �2�, and �12�–�16� and the energy con-
servation relation Eq. �9� associated with the initial and
boundary conditions presented above should be solved.

III. RESULTS AND DISCUSSION

Results will be presented in terms of nondimensional pa-
rameters as defined in the Appendix. The problem was
solved for a gold nanoparticle core and an alumina �amor-

phous Al2O3� shell with thermodynamic properties corre-
sponding to their bulk phase:7 G=3�1016 W m−3 K−1,
�=66 J m−3 K−2, Cl=2.49�106 J m−3 K−1, Dd=1.16
�10−5 m2 s−1, �m=36 m2 s−1, and �v�=6400 m s−1. The
free path of heat carriers, 
d, and phonon relaxation time, �,
in the dielectric are then 5.4 nm and 0.85 ps, respectively.
Let us stress that it would be possible in this model to ac-
count in a phenomenological manner for finite-size effects on
the electron-phonon scattering in the nanoparticle. Indeed,
confinement of electrons and phonons can lead to both the
modification of the Coulomb interaction screening26 and to
the appearance of specific vibration modes,27 inducing the
possible modification of the parameters G and Cl relative to
bulk values. Such effects are significant in small noble-metal
nanoparticles �Rp�5 nm�.26,28,29 In the present work, they
can be neglected as the particle radius is chosen large enough
�10 nm�. The initial temperature, T0, is set to 300 K. More-
over, Pvol�t� is considered to exhibit the same time depen-
dence as the incident pulse, which is supposed to be a Gauss-
ian. It is also worth mentioning that as the spatial width of
the pulse �at least few tens micrometers� is much larger than
the particle size �from a few nanometers to tenths of nanom-
eters�, the instantaneous energy absorbed by the particle is
homogeneous over the particle volume. The expression of
the absorbed power is Pvol�t�=Ae−B�t − t0�2

, where the param-
eter values are chosen equal to those of our earlier work7

�i.e., A=1.4�1021 W m−3, B=2.3�1026 s−2, and t0
=150 fs�. The corresponding pulse duration is 110 fs. The
numerical method is based on the finite differential element
technique and the stability has been ensured by choosing
�t= ��r�2 / �2Dd�.30 The calculation accuracy has been tested;
by dividing the value of �r by a factor two and �t by a factor
four, variations in the relative electron and lattice tempera-
tures are lower than 2.5%.

A. Thermalizing boundary condition

Let us first compare the results of the BDE model to the
one based on Fourier’s law. We have calculated the tempera-
ture dynamics using these two approaches with the same
parameters as well as the same initial and boundary condi-
tions. Figure 2 presents the electron and lattice nondimen-
sional temperature dynamics �black and gray lines� obtained
using BDE �solid line� and Fourier’s law �dash line�. The
gold particle radius is 10 nm and the shell thickness, ds, is of
the order of 
d ��5.4 nm�. It clearly appears that the two
methods predict the same behavior for the electron tempera-
ture during a few initial picoseconds, where Te increases
very rapidly up to 2200 K ��e=6.3� just after the pulse. It
then reveals a rapid relaxation due to electron-phonon scat-
tering. Tl is very low as compared to Te during this time and
can then be neglected in Eq. �1�. On the other hand the pulse
is quickly off at the beginning of this short-time regime.
Consequently, one can easily show that the electron tempera-
ture may simply be obtained by

Te�t� − Te,max � −
G

�
t , �22�

where Te,max is the maximum value of the electron-gas tem-
perature. The characteristic time of the rapid relaxation �r,
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defined as the time for the electron temperature to reach the
half of its maximum, is �r=Te,max� /2G. For the values con-
sidered here, this time, it is about �4 ps. At the end of this
relaxation, electrons and lattice attain a thermal equilibrium
and we can indifferently denote their respective temperatures
by the term particle temperature. Whatever the theoretical
approach used, this thermal equilibrium occurs after
�11 ps.

This rapid relaxation is then followed by a slow one
linked with the heat transfer to the matrix. This is the reason
for which it crucially depends on the heat transfer mecha-
nism in the surrounding medium; while the Fourier law pre-
dicts a rapid decay, the BDE presents a much slower one. In
fact, the Fourier theory is valid only when there are enough
scattering events within the matrix. This assumption leads to
an overestimation of the heat release from the particle when
using Fourier’s law, which is then to be evidently avoided in
the cases of spatial nanoscale and/or subpicosecond heating
processes. Therefore, the heat transfer from the particle is
actually slower than estimated by the classical Fourier theory
due to phonon rarefaction. The characteristic time for the
slow relaxation is of course larger in the BDE case than in
the Fourier one. In addition, as the energy injected by the
pulse remains for a longer time in the particle, the lattice
temperature predicted by the BDE is higher and its maxi-
mum is reached later than with Fourier’s law �Fig. 2�.

As the shell thickness is expected to play an important
role in the heat transfer mechanism when its value is of the
order of the phonon mean free path, let us investigate now its
influence on the metal-particle temperature relaxation. Figure
3 presents the electron temperature dynamics for different
values of the shell thickness, ds, from 0.1
d=0.54 nm to
10
d=54 nm. As can be seen in Fig. 3, �e�t� is independent
of ds during the short-time regime �rapid relaxation�. But
after a few picoseconds, the profile of �e�t� becomes thick-
ness dependent: the thicker the shell, the larger the charac-
teristic relaxation time.

This behavior may be explained as follows: the electron-
phonon characteristic time being worth a few picoseconds,

the energy transfer to the matrix is not effective during the
short-time regime. Consequently, �e�t� is not sensitive to the
morphology of the particle environment and the discussion
given above regarding the characteristic time of the rapid
relaxation remains valid. Now when the heat transfer to the
matrix becomes effective, the shell thickness value can affect
the particle temperature. Indeed, for a shell thickness inferior
to or comparable with 
d, the heat transfer mainly follows a
ballistic mechanism. When ds increases, the contribution of
diffusive processes to the heat transfer becomes more impor-
tant. This is shown in Fig. 4 where the time evolution of the
diffusive phonon population at the particle surface is com-
pared for different values of ds. The diffusive phonon popu-
lation around the particle is very low for a thin shell thick-
ness and its weight increases with thickness. It reaches a
limit value when the shell thickness exceeds a few 
d. This
behavior explains why the characteristic time in the domain
of slow relaxation tends to a certain constant value �Fig. 3�
corresponding to the “diffusive limit.” For clarifying this
point, Fig. 5 compares the time dependence of �e obtained
using the BDE and Fourier approaches for a shell thickness
equivalent to 
d and 10
d. As shown in this figure, the slow-
relaxation times predicted by these two approaches are quite
different for ds=
d, while for ds=10
d they are similar.
However, the particle temperature obtained using the BDE
remains slightly higher than that provided by the Fourier law.
This can be ascribed to the nonlocal heat transfer around the
particle.16 Note that the large thickness value corresponds to
the case of a dilute nanocomposite medium, i.e., where the
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FIG. 2. Nondimensional electron and lattice temperature dy-
namics �e�t� and �l�t�, respectively� of a gold nanoparticle sur-
rounded by an alumina shell under an ultrashort laser pulse excita-
tion. The data are obtained using the ballistic-diffusive
approximation �solid lines� and Fourier’s law �dash lines� within the
thermalizing boundary condition �imposed temperature at the shell
outer surface�. The nanoparticle radius is 10 nm and the shell thick-
ness is equal to the phonon mean free path in the dielectric 
d

�5.4 nm. The laser pulse duration is 110 fs.
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FIG. 3. Nondimensional electron temperature dynamics of a
gold nanoparticle �10 nm radius� in an alumina shell as calculated
by solving the BDE with the thermalizing boundary condition. Shell
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face for different shell thicknesses �see caption of Fig. 3�.
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distance between two neighboring gold nanoparticles ex-
ceeds the path covered by the heat front within the time
domain under consideration. Let us moreover point out that
within the thermalizing boundary condition, the thicker the
shell, the weaker the temperature gradient. The rise of the
relaxation rate when this gradient increases explains why the
relaxation dynamics slows down as ds grows in both ap-
proaches �BDE and Fourier� �Fig. 5�.

It should also be mentioned that at every time t before the
heat front reaches the shell external surface, we may define
an “effective thickness” corresponding to the path covered
by the heat front from t=0 to t.22 Contrary to the classical
parabolic Fourier law, the existence of a zone in the medium
not yet reached by the heat flux explains the similarity of the
temperature profiles for ds=5
d and 10
d in Fig. 3.

B. Adiabatic boundary condition

Figures 6–8 correspond to Figs. 2–4 when adiabatic
boundary conditions are imposed on the shell outer surface.
Under those conditions, the response of a close-packed core-
shell particle system is predicted. Previous conditions of an
imposed temperature at the outer boundary are more likely to
describe dilute core-shell particle distributions in a highly
conductive medium as a dielectric crystal. The differences
between both sets of results are significant.

Figure 6 shows that BDE and Fourier responses have
similar time dependence under adiabatic boundary condi-

tions and when the shell thickness ds=
d. A quantitative
disagreement of a few percents can still be observed. This
difference is generated in a short-time interval, apparently
between 5 and 10 picoseconds, and it remains on longer
times. In the BDE case, this effect is a signature of the bal-
listic flight of heat carriers or spatial nonlocality. It might
however not be easily detected through conventional pump-
probe femtosecond laser experiments. Another striking point
is that the electronic temperature profiles remain flat after 10
ps: the shell heat capacity being very small and the thermal
energy being confined in the shell, the characteristic time for
reaching the stationary regime approaches the phonon-
electron relaxation time itself.

Figure 7 proves that a larger shell thickness leads to a
stronger decrease in the electronic temperature because the
total heat capacity of the shell is augmented. When ds
=10
d, the difference between BDE and Fourier predictions
remains the same as for ds=
d in terms of absolute values,
but the relative difference this time reaches 10%–20%. The
boundary conditions do not affect significantly this last re-
sponse because the ballistic contribution cancels out when
heat carriers undergo several collisions or cross several mean
free paths.

Finally, Fig. 8 reveals more than one order-of-magnitude
difference between the time responses of the electronic tem-
perature when shell thickness varies. The reason for this be-
havior is once again that thermal energy is confined in the
shell. The apparition of the plateau only starts when the shell
is isothermal. The larger the shell thickness and heat capac-
ity, the later the plateau appears. In the case of imposed
temperature conditions, stationary regime only establishes
when heat flux cancels, i.e., when temperature on the shell
external surface reaches the imposed temperature.
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FIG. 5. Nondimensional electron temperature dynamics of a
gold nanoparticle �10 nm radius� in an alumina shell with two dif-
ferent thickness values obtained using the BDE �solid lines� and
Fourier’s law �dash lines� with the thermalizing boundary condition.
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FIG. 6. Same as Fig. 2 with adiabatic condition at the shell outer
boundary.
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FIG. 7. Same as Fig. 4 with adiabatic condition.
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FIG. 8. Same as Fig. 3 with adiabatic condition.

RASHIDI-HUYEH, VOLZ, AND PALPANT PHYSICAL REVIEW B 78, 125408 �2008�

125408-6



IV. CONCLUSION

According to previous works, the heat transfer from the
particle to the matrix can deviate from Fourier’s law predic-
tion depending on particle size: the smaller the particle, the
stronger the deviation.16 Consequently, the influence of the
non-Fourier heat transport on the temperature dynamics
linked with particle size may be envisaged for very small
particles. However, we have not observed any non-Fourier
deviation for particles with radii larger than 2 nm
��0.34
d� in the case of the alumina matrix. In this case
indeed, such influence should be revealed only for subna-
nometer particles. Such small particles are not relevant for
optical investigations because of their very weak surface-
plasmon resonance due to electron confinement effects.

It should also be reminded that the non-Fourier heat trans-
port due to the shell and possibly to the particle is related to
the nonlocal transport mechanisms linked with the nanoscale
structure of the material. Another non-Fourier heat transport
mechanism is related to the short heating time. This effect
becomes significant when the latter is inferior to the phonon
relaxation time � in the shell medium. Here the heating time
is governed by the electron-phonon coupling time of a few
picoseconds and neither by the pulse temporal width of 110
fs nor by �. Such influence would however manifest itself in
the slow-relaxation dynamics if the phonon relaxation time �
in the shell was larger.

We would finally like to underline two points regarding
the model. The first one concerns the difference between the
boundary conditions in the BDE description and in the Fou-
rier one. In fact, the values of the temperatures used in the
boundary conditions for the BDE are those of the emitted
phonons �nonreflecting condition�, while in the Fourier ap-
proach they are those of equilibrium phonons. This causes a
temperature jump at the interface in the BDE �or BTE�
case.18,19,22 This temperature jump is thus linked with the
ballistic origin of the phonons at the metal-dielectric inter-
face and depends on the shell thickness: the thinner the shell,
the stronger the temperature jump.22

The second point is related to the limit of the ballistic-
diffusive approach. Since the diffusive contribution in the
BDE is only an approximation to the heat-carrier scattering
processes, this model is less accurate when the diffusive
component is predominant and particularly in the steady
state.18,19

In summary, we have modeled the physical mechanisms
governing the electron and lattice temperature dynamics in a

gold nanoparticle core embedded in a dielectric shell under a
subpicosecond laser pulse, considering two different external
boundary conditions. This model is based on the usual
electron-phonon coupling in the particle and the ballistic-
diffusive approximation in the dielectric medium. It is well
suited to such situation where the Fourier theory is disquali-
fied to describe the heat propagation correctly at the space
and time scales involved. For a thin dielectric shell, in the
case of imposed temperature conditions at the outer bound-
ary, the prediction of the Fourier law for the slow-relaxation
characteristic time deviates from that predicted using the
BDE. This non-Fourier effect related to spatial nonlocality is
a valuable mean to determine the thickness of the shell or its
phonon mean free path.

As the shell thickness increases, the thermal behavior
tends to a diffusive limit, for which the slow-relaxation time
is comparable with that obtained using the Fourier approach
for heat conduction. However, the lattice temperature deter-
mined through the BDE is higher than the one obtained from
Fourier’s law. This result induces a significant impact on the
interpretation of pump-probe laser experiments involving
nanoparticle-based composites.

Non-Fourier heat transport affecting the dynamics of the
particle temperature may also occur �i� for very small par-
ticles with sizes much smaller than 
d and �ii� when the
particle heating rate is comparable or inferior to the phonon
relaxation time in the matrix �. Confirming these results by
ultrafast pump-probe experiments now represents an interest-
ing issue.
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APPENDIX

Results are presented in terms of the following non-
dimensional parameters: �i� electron nondimensional tem-
perature: �e�t�= Te�t�−T0� /T0, �ii� lattice nondimensional
temperature: �l�t�= Tl�t�−T0� /T0, �iii� nondimensional heat
fluxes: qb

��r , t�= qb�r , t�−q0b� / �Cd�v�T0� and qm
� �r , t�

= qm�r , t�−q0m� / �Cd�v�T0�, and �iv� nondimensional internal
energies: �b�r , t�= ub�r , t�−u0b� / �CdT0� and �m�r , t�
= um�r , t�−u0m� / �CdT0�.
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